
ISRAEL JOURNAL OF MATHEMATICS, Vol. 61, No. 1, 1988 

ON THE MAXIMAL ERGODIC THEOREM FOR 
CERTAIN SUBSETS OF THE INTEGERS 

BY 

J. BOURGAIN 
IHES, 35 Route de Chartres, 91440 Bures-sur-Yvette, France 

ABSTRACT 

It is shown that the set of squares (n21n = 1, 2 . . . .  } or, more generally, sets 
{ nt  I n = 1, 2 . . . .  }, t a positive integer, satisfies the pointwise ergodic theorem 
for L 2_ functions. This gives an affirmative answer to a problem considered by 
A. Bellow [Be] and H. Furstenberg [Fu]. The previous result extends to 
polynomial sets { p(n)] n = 1,2 . . . .  } and systems of commuting transforma- 
tions. We also state density conditions for random sets of integers in order to 
be "good sequences" for LP-functions, p > 1. 

1. Introduction 

Let (~, #, T) be a dynamical system and N a subset of the positive integers. 
For bounded measurable funct ionsfon f~, consider the "maximal function" of 
the ergodic averages with respect to N 

(1.1) .~/~f  = sup l "~¢A,f[ 
)>_-I 

where 
1 

~/Af = • T~f and A t = N N [ 0 , j ] .  
IAI .cA 

The purpose of this paper is to prove for certain arithmetic sets Nthe  apriori 
L:-bound on JgN. Considering for (f~,/t, T) the shift on Z(o r  on a cyclic group 
ZK), ~'N becomes the maximal function corresponding to a sequence of 
convolution operators. As such, we will prove boundedness properties using 
Fourier transform methods. Of course, this is essentially an L2-theory and 
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(1.2) 

THEOREM 2. 
integer. 

does not enable to obtain weak-type bounds on L ~, for instance (thus the full 

analogue of  BirkhofPs theorem). There is a variety of  results that one can 

obtain by this method, the main request being to have enough information 

about the Fourier transform of the underlying kernels. In the applications 

listed below, these Fourier transforms appear as Weyl exponential sums and 

have been well studied in Number Theory. We will use results from [S], [Vaug], 
and [Vin]. 

THEOREM 1. I f N  = (n 2 [ n ~ N ) ,  then ~4IN is L2-bounded, i.e.,  there is the 

fol lowing inequality (a priori for  bounded measurable functions): 

[] ~ t [ . f  [iL2(u)_~ C [[ f [iL'(u). 

The analogue o f  Theorem I for  N = ( n t [ n E N ) ,  t a positive 

The proof of Theorem 1 is more elementary and we tried to make the 

argument more self-contained. The relevant exponential sums for t = 2 are 

Gauss sums which are easier to handle. We will make use of  an estimate from 

Sark6zy's paper [S] (see Lemma 4.1). 

In proving Theorem 2, we will use some facts related to exponential sums 

which appear in solving the Waring problem. Our discussion is based on the 

references [Vaug] and [Vin]. 

Theorem 2 can be extended to polynomial functions p(n),  p with integer 
coefficients, using the same method as for powers p(n)  = n ~. Possibly the 
LE-estimates appearing here can be combined with certain interpolation 

methods to get the maximal inequality on L p for p > 1. This will be in- 

vestigated elsewhere.* 
There is the following corollary of the equidistribution (mod l) of (n t a) for 

a an irrational number. 

COROLLARY 3. ( 1/n ) Zmn~- 1 f ( x  + re'a) -~ f~ f ( x ) d x  a .s. for  a ~ R \ Q a n d f  

a bounded measurable function on T = R/Z.  

Observe that the equidistribution results only imply convergence in the 

mean. There is also the following consequence related to results in Marstrand's 

paper [M].** 

t See the forthcoming paper [B2] in this respect. 
** The results presented in this paper remain valid for positive isometries. 
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COROLLARY 4. ( l /n)  Z~-__~ f(2('~')x) --* f f ( x ) d x  a . s . , f o r f b o u n d e d  measur- 

able on T, generalizing the R ie s z -Ra ikov  result for t = 1. 

Corollary 3 has the following generalization for arbitrary measure preserv- 
ing transformations. 

THEOREM 5. Le t  (f~, I1, T)  be a dynamical  system and t > 1 an integer. 

Then,  for f E L 2( ~ ,  I~ ), 

n m = l  

converges a .e. for n --" oc. 

The same statement holds replacing n t by p(n)  an arbitrary polynomial with 
integer coefficients. 

As for Theorem 2, the proof of Theorem 5 is only worked out for powers 

p (n )  = n t. The argument for polynomials is almost identical and left to the 
reader. (The relevant exponential sums for a polynomial p (n) of degree t are at 

least as good as in the case p(n)  = n t, discussed in Section 6 of this paper.) An 
alternative approach is presented in Appendix 2. 

The main problem here is due to the fact that, in general, there is no natural 

dense set of functions for which the a.s. convergence holds. Theorem 5 is thus 
not an immediate consequence of Theorem 2. However, we will use the 
maximal function inequality given by Theorem 2 and the elements of the 

proof. Observe indeed that the L2-boundedness of JtCf= sup,>_~l~¢, f l  re- 
duces the problem to L~-bounded functions. 

The main results of  this paper were announced in [B I ]. 

2. Reduction to the shift 

In the context of the maximal function problem, the case of a general 
dynamical system (fl,/~, T) is equivalent to the shift S acting on a cyclic group 

ZK = Z / K Z  or on the integers Z. (In the Z-case, we may take functions with a 

finite support in proving a priori inequalities.) Let x ~ f2 be a fixed point and 

define f o n  Z by 

(2.1) f ( j )  = f (TJx)  = TJf(x) 

where f i s  a bounded measurable function on f~. 
Then for A c Z 
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and thus 

(2.2) 

1 1 
~/Af(J) = - -  1; f ( J  + k ) =  1; 

I A I  keA I AI keA 

dC u~( j  ) = ./lC Nof ( TJ x ) 

T V (  T~x) = ~ ~ f (  T~x) 

and letting J ---- oo 

1 

J IJI<J-R 

hence from (2.1), (2.2) 

II ~augO lit' ~ B II ~0 lit'- 

Put ~0 =f[n;J  zJJ- Since clearly JI/~of(J)= ~aUo~O(J) if IJ 
from (2.3) that 

Y~ I J (N~( j )  It" <= Bt" 1;[q)(.j)I t', 
IJl <J-R 

< J - R, it follows 

1 
= E<_ I f ( T ' x ) V .  I~aNof(TJx) I p < Bt" J JJ _~ 

Since this inequality is valid for all x E f~, integration and using the fact that T 

is measure preserving yields 

1 
- : (J  - R)II oaNof IIg --< BP II f i l l  
J 

II d/~vof II t' ~ B II f II ~. 

Since No is an arbitrary finite segment of N, this completes the proof. 

REMARKS. (1) Previous argument yields also a proof of the weak-type 

inequality for the maximal function in the context of  Birkhott's theorem. 

(2) The generalization to positive isometries is straightforward. 

3. Fourier transform estimate of certain maximal functions 

For a E T, the Fourier transformf(a) of  a (finitely supported) funct ionfon Z 

is given by 
f (a )  = Y. f ( j ) e  -2"i;" 

jEz 

(2.3) 

for any initial segment No = N O [0, R] of the set N. 

Assume now 1 < p < oo and that we have an inequality relative to (Z, S) 
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and by Parsaval's identity 

5o l 2 If(J) 12= If(<l) 12d~. 
j E z  

If  T is the shift on Z, then 

l y, Tmf= f l l iKn  whereK.= 1 ~] 
n + 1,,,=o n + l m = o  

Thus 

(f . K.)(x) = --f olf(oOK,(cOe2"~d,x 

where/(~ (a) is given by the exponential sum 

I~.(<0 = i - -L-  ~ e 2'"'°. 
n + 1.,=0 

Clearly, in evaluating the maximal operator, it suffices to consider diadic 
values of n, i.e., n ~Z-----{2 k I k = 1, 2 . . . .  }. The advantage of considering 
Fourier transforms lies in the following consideration. Assume we obtained for 
each n an approximat ion/] ,  o f / ( .  in the sense that 

(3.1) II/7% - /Z.  II ~ < (log n) - ~, a > ½. 

We then have 

s u p l f * K . I  < s u p l f * L . I  + I f * ( / ( . - L . ) I  , 
n ~ Z  Z n 

sup I f*K.  [ sup I f*L.  [ IIKo - L .  IlL [I fll2, 
Z Z n 

where, by (3.1), 

IlK. £.  IlL < <oo.  - = (  x s- o! 
n \ j =  I / 

Essentially speaking, the £ .  are obtained by restricting K. to a system of major 
arcs, where it has a "nice" behaviour. The following lemma will be useful in 
evaluating the major arc contribution. 

Let 0 < ~0 < 1 be a smooth bumpfunct ion vanishing outside a z-neighbor- 
hood of 0. Assume k ~ L  l(R) satisfies a maximal inequality 
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(3.2) suplf*ktt>0 { z'm) =< C(k)II fll~'~ 

Let ~ be a set of  rational points 0 E [0, 1 ] which can be given a common 

denominator Q satisfying 

(3.3) Qr ~ 1. 

F o r f a  (finitely supported) function f o n  Z, define 

= ~, f I~(t(a - o))f(a)c2"~xrp(u - O)da (3.4) AJ (x )  
O E ~  J 

and the maximal operator 

Then 

(3.5) 

PROOF. 

M f  = sup IA,f[. 
t > 0  

II My II t~lz) ~ 4c(k) II f II z,lz~. 

Rewrite A t f  as 

and put x = Qy + z where y U Z, z ~ (0, 1 . . . .  , Q - 1 }. Thus by hypothesis on 

and Q 

(3.6) Atf(x)  = f l¢(t/3)~o(/3)F(z, [3)e2"aOYd[3 

where 
F(z, fl) = 2 f(O + fl)e z"i¢°+p)z. 

O~ ~t 

We have 

Q - 1 ,,~ 2 

(3.7) II Mf II,~¢z) = Z sup / [c(t/3)~o([3)F(z,/3)e2"iPQYd]3 
z = 0  t > 0  ~ 12(Z,dY) 

and evaluate for fixed z the corresponding term in (3.7). The purpose of what 

follows is to replace the 12(Z, dy) and L2(R) norms. 
Denote ~ the best constant in the a priori inequality 
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(3.8) supSl~(tfl)(o(fl)F(fl)e2~i~YdP ,2(z=<~(fLF(fl)i2~0(p)2dB) ~a. 
t>o 

For 0 < u =< 1, estimate the left member of (3.8) as 

s ° f 

(3.9) I "  
+ s, UPo J l~(tfl)~°(fi)F(fl)(e2"~"-1)eZn*~Ydfl t2(z) 

and use (3.8) to evaluate the second term in (3.9) as 

If(fl)l'le 2''aa" - -  l l2~o(f l)2dfl  ~ C((Qr) If(fl)12(o(fl)2dfl) . 
(3.1o) 

Integrating the first term in (3.9) with respect to u ~ [0, 1], there follows from 
(3.2) and a change of variable y'  = Qy the estimate 

f 
(3.11) 

Consequently, by (3.10), (3.1 I) and (3.3) 

C(k) C(k) 
(3.12) ( < C(Qz)~ + ~ ( < 2 - -  

0,,2 Q,,2 

Applying (3.8), (3.12) to (3.7) gives 

U MfII~ < 4 C(k)2 - 2 - Q f ~°(fl)2 ~=i o~.~f(O+fl)e2"°+')z dfl 

=4C(k)Z f ¢(fi) 2 Y~ If(O +fl)l:'dfl 
, . I  

using the fact that, by (3.3), the functions (0e (0 E ~ )  are disjointly supported. 
Thus II Mf 112 =<- 4C(k) II f II 2, proving (3.4). 
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4. The behaviour of  Gauss  sums 

In this section, consider the case t --- 2 where/~, (a) = ( l /n)  ~ 2 ~  e 2"i"~. The 
purpose of what follows is to provide the substitute £ , (a)  of/~,(a) by studying 
the behavior of/('n (a) on a suitable system of major arcs. We are giving some 
details, rather than invoking directly [Vaug] (Lemma 2.7). The following 
lemma appears in [S]. 

LEMMA 4.1. Let ~ be a real number and a, q >-_ I integers satisfying 
(a, q) = 1 and I ol - a/q [ < 1/q 2. Then 

Y, e 2"im~ < C  n + ( n l o g q ) t / 2 + ( q l o g q ) l / z  . 
m = 0  

Letting for (a, q) = 1 

we also have that 

LEMMA 4.2. 

LEMMA 4.3. 

Then 

(4.4) 

where 

l q - I  
S(q,  a) = - Y, e 2nir2a/q (Gauss sum) 

qr=o 

IS(q, a)l < Cq -t/2. 

Assume l < a <-_ q < n ° (v = ~ say), (a, q ) =  l and 

aEJlg(q,  a)=- {aEl-l; la -- a/q { < 1/n2-°}. 

I~n(a) = S(q,  a)vn(a - a/q) + O(n -1/2) 

~0 
1 

(4.5) v,(fl) = e2"'"2x'~dx. 

I f  l~l < 1/n z-°, then I~,(a) = v,(a) + O(n -1/2). 

PROOF. F o r l < m < n , m = d q + r ( 0  < r  < q )  a n d f l = a - a / q ,  

m2a=(d2q2 + 2rdq + r2) (aq + f l ) E Z  + r2a/q + d2q2fl + O(n2°-l). 

Hence 
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= e 2"i(a/q)r: Y~ e 2"d'q'~} + O ( q / n )  + O ( n 2 ° - ' ) .  
d=0 / 

Since for d < 2 < d + 1, I e 2"a~q~ - e 2"~d~q~ I < Cn  - ~ + ~, 

implying (4.4). 

Fix 0 < p < 1 and let 0 ___< G < 1 be a smooth bumpfunct ion on R such that 

~s(fl) = 1 if Ifll < 2 -(~"), 

G ( f l )  = 0 if Ifll > 2.2 -("). 

Define also 

Let 

(4.6) 

F, = {(a, q) 1 1 _<a < q ,  (a, q ) =  1 a n d s  =<q _< 2s}. 

I£,,(a) = v,,(a) + ~ Y~ S ( q ,  a )v , , (a  - a / q ) ~ s ( a  - a / q ) .  
sdiadic (a,q)~F, 

LEMMA 4.6. [I/(, - £ ,  [ [ ~ < C l o g n )  -~/zp 

PROOF. By definition of G, it follows that for each generation Fs, the 
functions G(a - a / q )  are disjointly supported. Moreover, by (5.2) and the fact 
that from van der Corput's lemma 

I v,(/~)[ < Cn-Ol/~l -v2 

for F c  F, 

Y~ I S ( q ,  a)L~ps(a - a / q ) ] v , , ( a  - a / q ) l  
(a,q)~F 

(4.7) < Cs  -1/2 sup [1 + n ] a - a / q [ 1 / 2 ]  -~ 
(a,q)~F 

Assume first a~_ .Al (q ,  a ) ,  s <= q <= 2s .  Then R,(a) is given by (4.4). We have 
[a - a ' / q ' [  > 1/n i fq '  < n ~/2, (a ,  q )  ~ (a ' ,  q ' ) .  Hence, by (4.7) 

(4.8) £ , (a)  = S ( q ,  a)v , , (a  - a/q)q~s(a - a / q )  + O ( n  -1/4). 
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¢s(a- -a /q)= 1 and I /£n(a)-£ . (c0[  < C n  -"4. If sP>_- 

IS(q, a)l < C(log rt) -t/2p 

I/~n(a) - £ . (a)  l ~ IK.(a) l + [ £ . ( a ) / <  C(log n) -¿/2p 

Next assume a is not in a major arc, thus lal > n -2+° and 

[a - a/q [ < n -  2+'~=~ q >= n°. 

By Dirichlet's principle, given a, we may find a < q, (a, q ) =  1 satisfying 
q < n 2-°, l a -  a/ql < q-~n -2+° < q-2. Thus, by assumption, q > n o . 

From (4.1), it follows that I/('Ao01 <Crl -v/3. On the other hand, again 
by (4.7) 

II~,n(Ol) l ~ ~ Cs  -1/2/./-0/2 _.~ 2 s - 1 / 2  = O(n -on) 
S • ? l  ° S ? >  n ~' 

s diadic s diadic 

completing the proof. 

5. Proof of Theorem 1 

Coming back to the discussion in Section 3, it follows from (4.7) that (3.1) 
holds provided p < 1. Thus we are reduced to evaluating in L2-norm 

sup If*L,, I 
n~-Z 

(5.1) 
= < sup f f(a)v.(a)e2"i~xda [ 

nUZ ,,..i 

(5.2) + ,d~d ¢ sup ~a.~r, S(q' a ) f  f (a)v, , (a-  a/q)tps(a- a/q)e2"~'Xda 

Since the argument to bound (5.1) is contained in the argument to estimate the 
s-term in (5.2), we only consider the sum (5.2). Denote Bs the best constant 
satisfying an inequality 

2 ` (  
(5.3) sup l~A[g] l  _-Bs Ilgl/2 

/1 

where 
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~,~[gl(x) = 

Clearly 

defining 

Y~ ; g(a)v~(a - a/q)~o,(a - a / q ) e 2 ~ d a .  
(a,q)~F, 

Y~ S(q,  a) f f(a)v~(a - a/q)~o,(a - a/q)e2~'~da = -~,,dg,] 
(a,q)EFx 

~ =  ~ S(q,a)f 'Zio, ,  
(a,q)Er, 

where I,/q is a 2.2 -(,') neighborhood of a/q. Thus by (4.2) and (5.3) 

supl.-g,,~[g,]! _-<n, IIg, 112- -< cn~ s-''211fl12 
n 2 

and to control the sum in (5.2) it suffices to let B, fulfil the condition 

(5.4) y~ Bs S -1/2 < 9c. 

The remainder of this section deals with (5.3). Fix 6 < p  and consider a 

further splitting of F, in s ~- ~ sets A each of which only involves s ~ values of  q, 
which consequently have common multiple Q = Q^ satisfying 

(5.5) log Q < (log s)s ~ < s C  

We prove that for each such set A 

(5.6) sup, , , .2  ^ f g (=)v , ( ,~ -a /q )~ ( ,~ -a /q ) e2"~d~[  2=_<CIIg 112 

where (a = G  is supported by a r-neighborhood of 0, rQ ,~ 1 (from the 
definition of ~0,). In (5.6), C is a fixed constant, implying, by the triangle 

inequality, 

B <= C . s ~-~ 

and thus (5.4), taking ½ < 6 < p  < 1. 

To obtain (5.6), the general estimate of Section 3 is used. Rewrite 

Y0' '2 vn(]3) = e2"*n2~'#dx = - e 2nin2#y - -  dy = f¢( - n2[3) 
2 , 6  

where k (y )  = ~y-~/2X¢0,~1 is in L ~(R) ( = quadratic density). Since k is decreas- 
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ing, we may take C(k) to be a constant in (3.2) and (3.5) completes the proof, 

since (3.3) is verified. The left member of (5.6) is indeed bounded by 

s, u0P (a.q)eA f l~(t(a/q -- a/q)da 

6. Proof of Theorem 2 

The problem in the case of higher powers (n/}, t > 2 comes from worse 

bounds on the corresponding Weyl sums 

l q - I  
(6.1) S(q, a) = - Y~ e 2"(a/q)'', (a, q) = 1. 

qr=o 

Recall first H. Weyl's inequality. 

LEMMA 6.2. Let ( a , q ) =  1, l a -  a/ql < l / q  2 and f ( a ) =  Z"m=0 e 2"i'~'~. 

Then 

If(a)l <n~+"[q -~ + n - l  + qn-qm(  where K =  2 t-t 

Let again v = ~ and consider the same system of major arcs 

.ao= {-exl <n- t+°}  • 

For (a, q) = l, l < a < q < n  ° 

+a(q, a) = { a E T  I l a - a / q l  < n - ' + ° ) .  

We then have by [Vaug] (Lemma 2.7) 

Let /(,(a) = ( l /n)  E"m=O e 2nim" and aE~,#o or a ~ t l ( q ,  a). 

(6.4) K,(a) = S(q, s)v,(a - a/q) + O(n -t/z) 

where now S(q, a) is given by (6.1) and 

v.(B) = f o  I e2rtin'xrfldx" 

I f  a is not in a major arc, then by Dirichlet's principle and Lemma 6.2, 

(6.5) IK,(a)l _-< n-,/K+, 

In the next lemma, information about the S(q, a) is summarized. 

LEMMA 6.3. 
Then 
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LEMMA. 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

PROOF. 

IS(q,  a)l _< Cq -~:x +'. 

I f  q is pr ime and(a ,  q) = 1, then IS(q,  a)[ < Cq - m .  

I f  q is prime,  (a, q ) =  1 and k > 1, then 

IS(q k, a)l < Cq -x 

Let  p be a pr ime ( p , q) = 1 and  ( a , pq ) = 1. Then 

IS (pq ,  a)l =< Cp-t/Zq -t/t¢+~, 

IS(pkq,  a)l < C p - l q  -ILK+" f o r k >  l. 

(6.6) follows from (6.2) taking a = a/q,  n = q. (6.7) is a particular 

case of  an inequality due to A. Weil (see [L-N] for an elementary exposition). 
To prove (6.8), we may assume (q, t) = 1. Writing for 0 < m < qk, 

we have 

m = y + z q k - t ;  0 < y < q  k-~, O < z < q ,  

/ \ 

O<m<q k O<y<q k-I 0 q \ ~ : <  / 

= q ~ e 2my'aq-k 

O<y<q k-I 

q[Y 

implying (6.8). 

To prove (6.9), observe that the residue classes mod pkq have a unique 

representation 

Hence 

m = xpk + yq; O <= x < q, O <--_ y < p ~. 

O< m <pkq O<X< q / \ O < y  <pk 

where a'  = ap k~'-~), a"  = aq t-l ,  hence (a', q) = 1 = (a", p). Consequently 

[S(pkq,  a)l  = IS(q,  a')[ . [ S ( p  k, a") t  

and (6.9) follows immediately from (6.6) and (6.7), (6.8). 
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LEMMA 6.10. Assume  (a, q) = 1, q has a pr ime  factor at least equal to s and 

q > s  ~+6. Then 

[S (q ,a ) l  < C s  - ' /2-v,  cY <c~/K. 

PROOF. Write q = pkq, wi thp  -->_ s, p prime and (p ,  q') = 1. Apply (6.9). If  

k > 1, I S(q,  a)  I < s - 1. Otherwise 

IS(q,  a)l  < p- l /2 (q /p ) - I t r  +, <s -V2+l / r  s-O+6xl/r-~) • 

Our next purpose is to write an appropriate approximation £ , ( a )  for/( ' ,(a),  

such that 

II/2. - R. II ~ < (log n) -o (a > ½) 

and 11 sup, I f *  L,  I 1[ z may be est imated similarly as in the quadratic case. 
Fix 0 < p < 1 < x and 6 > 0. Let for diadic s, 0 < ~os < 1 and 0 _-< ¢t~ =< 1 be 

smooth functions satisfying 

~o,(f l)  = I if  IPl < 2 - ( : 7  

~ , ( f l ) = l  i f l f l l < 2 - ( : )  

Define 

and ~o,(fl) = 0 for IPl > 2.2-("), 

and p,~(fl) = 0 for I//I > 2.2-(s ' .  

Q~ = [s!]C.~0og~] 

where C(t)  is a large integer depending on t. 

Let further 

and  define 

(6.11) 

r~ = {(a,  q) J(a, q) = 1 and q I Q~}, 

L = L \ L - , ,  

£ , ( a )  = v,(a) + Y~ ~, S(q ,  a)v , (a  - a/q)Cq(a - a /q)  
s diadic (a,q)~:F, 

(6.12) + Y~ Y~ S(q ,  a)v , (a  - a/q)(~o, - ¢/,)(a - a/q).  
s diadic (a q)EF~ 

q~S I+a 

LEMMA 6.13. I/~,(a) - £ . ( a )  [ _-<_ (log n)  -~ for some  a > ½. 

Observe that for each s in (6.11), q } Qs i f ( a ,  q )EFs  where 

logQs " - ' s ( l o g s ) 2 < :  ( to> 1). 
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The bumpfunct ion g~ is thus supported by a r-neighborhood of  0 where 
z .  Q~ ~ 1. Therefore, (6.11) gives a maximal function estimated as 

(6.14) Y~ sup IS(q, a)l 
s diadic (a,q)~-Fs 

using again the rsult of  Section 3, where now 

1 
k(y) - l/------~ ZtO, ll. 

tyl - 

Notice that, by definition of Qs, if (a, q) ~ Fs_ ~, necessarily q >___ s and 
IS(q ,  a)l < s- lax.  Hence (6.14) is bounded. To estimate the contribution of  
the terms in (6.12), split 

F~ 0 { ( a , q ) [ q  <-_s '+~} 

is s 6+"-p') sets A, each of which only involves s p' values of q. Taking p '  < p ,  
these q's will have a common multiple Q satisfying 

log Q <= s p' log s < s p ~ rQ "~ 1 

letting z = 2.2 -(~"). since ~0~ is supported by a z-neighborhood of 0, the estimate 
in Section 3 appies to each set A. The contribution of (6.12) is evaluated as 

s - l /K  +ts~+(l-P') < (30 
s diadie 

provide 

(6.15) 1 /K>O + (1 - p ' )  + e, leading to the condition 6 + (1 - p ) < l / K .  

PROOV Or: (6.13). Observe that again by van der Corput's lemma 

Ifole2.,.'BX'ax I v . ( P ) l  = _-< Cn-llp I- l,, 

and that for fixed s 

{~,~(a - a/q) l(a, q ) ~ F , } ;  {~0s(a - a/q) lq --<s '+~}  

are disjointly supported functions. Therefore, if F C F~ 

t~,~cr,, S (q ,  a ) v , ( a  - a/q)~u~(a - a / q )  

(6.16) < C sup {IS(q ,a) l  .[1 + n l a - a / q l  I"]-I} ,  
(a,q)El" 
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O~,q)~ S (q ,  a)v,,(a - a/q)~o,(a - a /q )  

q ~ s  1+6 

(6.17) 
___<C sup { I S ( q , a ) l . [ l  + n  [ a - a / q l t / ' ] - ~ } .  

(a,q)~F 

Assume first a belongs to a major arc Jr/o or ~,t/'(q, a), q < n °. Then/~,(c0 is 
given by (6.4) 

l~,(a) = S (q ,  a ) v , ( a  - a /q )  + O(n  -~n). 

Assume (a, q)EF~. For each s', let I"~, = F, , \  {(a, q)}. Then 

£ , ( a )  = S (q ,  a ) v , ( a  - a/q)~' , (a  - a /q )  

+ S (q ,  a ) % ( a  - a/q)(~os - q/~)(a - a /q )  (ifq < s  '+a) 

+ error term E 

where by (6.16), (6.17) 

(6.18) E < ~] sup { I S ( q ' , a ' ) l . [ l + n l a - a ' / q ' l ~ / ' ] - t } .  
s '  diadic (q',a')El~s, 

Notice that i f (a ,  q) 4: (a', q'), q' < n, then 

If q ' >  n, then 
hence 

aq a~ l a a~ 
- > ~ - > 2 n - I - .  

Fl I + v  

I S (q ' ,  a')l < n-I /2K Also, if (q', a')EFs,, necessarily q ' >  s', 

I S (q ' ,  a ') l  < (s') - ,/2x 

Thus (6.18) is bounded by 

E <-_ Y. ( s ' ) -  1~2x ̂  n -J/2x < Cn - 113x 
s' diadic 

A s s u m e  q < sl +~. Then 

£ , ( a )  = S (q ,  a ) v , ( a  - a/q)q~s(a - a /q )  + O(n  -u3x). 

If ~0~(a - a /q )  ¢ 1, then 

n ° - '  > la  - a /q]  > 2 -~P)=~ s > (log n) TM. 
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By definition of Q~ and the fact that (a, q) ~ 1~_ :, q has a prime factor at least s 
and consequently, by (6.9), 

IS(q ,  a)l < Cs -v z  < C(log n) -~, 

Hence 

cr = I /2p > ½. 

I / ¢ , ( a ) - £ , ( a ) l  ~< I S ( q , a ) l  < C ( l o g n )  -" 

A s s u m e  q > s: +~. It follows from (6.10) that IS (q ,  a)[ < s - ln-a ,  provided 
q has a prime factor ->__ s. Otherwise, by definition of Qs-~, log q > C ( t ) .  log s. 
In the last case, using (6.6), for appropriate C(t) ,  IS (q ,  a)l < s - l .  We have 

I¢,(a) = S(q ,  a ) v , (a  - a / q )  + O(n  -v2), 

£ , ( a )  = S (q ,  a ) v , (a  - a /q )~s (a  - a /q )  + O(n  -vsx).  

If ~us(a - a /q )  4 1, then 

n -,+o > la - a / q l  > 2 -(s~)=~ s > (log n) ~/~ 

and" consequently 

I/('.(•) - £ . ( - ) [  < IS(q. a)l  < (log n) -(l/~)~,/2+a,)< (log n) -0, a > ½ 

provided 
1 + 2 ~ ' > x .  

This establishes (6.13) for a in a major arc. 
Thus it remains to consider the case a ~ J / 0  and o ~  Jr(q ,  a) for q < n °. By 

(6.5), t/('n(a) I < n -o/~+,. Estimate £,(~) by (6.16), (6.17) as 

IL , (~) l - -<n-~ l~[ -~"+  ~ sup { I S ( q , a ) [ . [ l + n l a - a / q l ~ / ' ] - ~ } .  
s diadic (a,q)EFs 

By hypothesis, l a l > n  - '+° and I c ~ - a / q l  > n - '+° for q < n  ~. I f q > n  °, 

IS (q ,  a){ < n -°nx .  Also, again IS (q ,  a) l  < s  - inK for (a, q )EF , ,  since q > s. 

Hence 

I£,(a)l <= n-~/ '  + Y, (s - ' n x  ^ n-Onx)  < Cn-~/3x. 
s diadic 

This completes the proof  of (6.13) and hence of Theorem 2. 
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7. Proof of Theorem 5 

Suppose II fll2 --< 1, II f l l  ~ --< 1 and N . f =  ( l /n )  Z~=I T(" ')fdoes not con- 
verge a.s. Then there is r > 0 and an increasing sequence of  integers no < nl < 

• " • < n k - t  < nk < • • ", nk > 2nk - l ,  such that for each k 

(7.1) ~[.._,<.<..max I N . f - d . . _ , f ,  > r ] > r .  

Take t = r /10 and define S = {[1 + e)r]; r = 1, 2 . . . .  }. Since II f [ l ~  5 1, for 
n'---~(1 + e ) '  < n < (1  + e )  r+l 

I N . f -  d . , f f  < 4e. 

Thus, letting Sk = S Cl [nk- j, nk], 

max I N . f -  N.~_,fl < max I N . f -  N.,_, f l  + 4e, 
nk-i<n<nk nESk 

(7.2) 

/~ [ m a x ,  N , f - - L  ,esk N.~_,fl > r /2]  > V. 

Our  purpose is to show that taking K = K(T) sufficiently large, (7.2) cannot 

hold for k = 1 . . . .  , K. This is a s tatement of  "finite nature" and, as for the 

maximal  operator, the general case is equivalent to the special case of  the shift 
on Z.  The argument is similar to the one appearing in Section 2. Thus for fixed 
x E f~, define ~o on Z by 

~o(j) = f ( T J x )  for IJl ~ J 

= 0  for IJl > J  

when J is taken large enough (depending on nK). Assume the following 
statement holds: 

LEMMA 7.3. I f  II II ~ -< 1 is a f in i t e ly  suppor ted  f unc t ion  on Z ,  then 

2 

max I N.~o - N.,_,q I < O(K)K II ~o II 
l < k < K  nESk 2 

when O(K) ~ 0 f o r  K ~ oo. 

We thus obtain by definition of  ~o, letting R = nk, 

Y~ Y. max I ( N . f -  N.,_,f)(TJx)l  < OK 
k = l  [ j I < J - R L  n~gk 

Y~ If(T~x)12. 
IJl ~ J  
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Integrating in x ~ 1), since T is measure preserving 

K 

(J  - R) Y~ 
k ~ l  

maX.es, I a G f  - d .~_, f l  i ~ OKJ II fll2 z 

and (7.2) implies 

j - R z  3 

J 4 
< O(K) ]l f ] l ]  hence r 3 < 40(K), 

a contradiction for K --- ~:. 

In the case of the shift (Z, S), we have d.~0 =~0 .K .  when K. = 
(1/n)Y~" m=l 6{,,,}. Again, with L, defined by (6.11), (6.12) and nk = (1 + e)r* 

maX.~s~ I~1.~0 - ~1.~_301 2 

_-< m a x l ( ~ * L . ) - ( o ~ * L . , _ , ) l  + II/~.-/% IlL 
n E S k  2 n 

( 2 ,),,2 = max [~o , ( L ,  - L,,_,)I + e - "  r-Z II  0112 
n ~ S k  2 \ r , _ ~ < r < r k  

and the left member  of (7.3) is bounded by 

(7.4) c ~z m a x l ~ 0 * ( L . - L . . , ) l  i+c(r) ll~oll2 _ 2 • 
1 <-_ K n~-S~ 

Coming back to the definition of £.(a)  given by (6.11), (6.12), we may write 

(7.5) /£.(a) --- v.(a) + Y. Y~ S(q, a)v.(a - a/q)tls(a - a/q) 
S diadic ( a , q ) E A s  

where 

fol v . ( fl ) = e2""'x'P dx , 

(a, q) ~ As =* q [ Qs and 0 <_- qs < 1 is a smooth bumpfunction.  As shown in the 
previous section 

supt ~q~(a)[ Y, S ( q , a ) v ~ ( a - a / q ) q s ( a - a / q ) ] e 2 ~ X d a  I 2<cs -~ 
n "~ {a ,q )EAs  

(7.6) 
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for some x > 0. Thus the larger values of  s will have a small contr ibut ion in 

(7.4). More  precisely, fix So and estimate, by (7.6), 

(7.7) maxl~p,(L,,-L,,~_,)l 2 < maxl~*(M,,-M, ,~_,) l  2 " [ - C  ~ S - x  
n~-Sk nESk s >So 

s diadic 

letting 

(7.8) ./(4,,(a) = v,,(a) + Y~ Y~ S(q, a)v,,(a - a/q)rls(a - a/q). 
s <so (a,q)•As 

Estimate the sum in (7.4) as 

f I' Ks(  ~ + ~, max O(cO(v. - 2.gx~ v.~ ,)(a)e da 
1 < k < K nESk 2 

(7.9) + Ihl  ~ Y. Y~ 
1 < - < -  < k < K  ~ ~ o  (a,q)~-As l 
s diadic 

× max f ~ (a ) ( v . -  v.~_,)(a-a/q)rls(a-a/q)e2'~i:'"da 2 2 

where h -- (-Js<s0As. 
This estimate follows from (7.7), (7.8), the triangle inequality and Cauchy-  

Schwarz. 

Let 0 _-< q _-< 1 be a smooth function vanishing outside a neighborhood of  0. 

Assume there is a constant B, independent  o f  K, satisfying the inequality 

~ f ,, ,.,a,e2~X~da i<_ 2 (7.10) max ~(a)(v, - v,~_,Rajq~ ~ B I[ g 112. 
I < _ K  n~-Sk ,,J 

Then (7.9) is bounded  by 

Kso '~ + C(So)B 

and consequently we may take in (7.3) 

0 = So '~ + BC(So). 

Thus, for an appropriate choice of  So = so(K), it follows that O(K)---, 0 when 
K---oo.  It remains to prove (7.10). Recall that 

Vn(ot  ) = ]~( - -  n t a )  with k(y)  = }yl/t-tZtO.ll 
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and the inequality 

(7.11) s u p l h * k ~ l  = c  IIh IIL2(R , k ~ ( Y ) = 2 - 1 k ( 2 - 1 Y )  
.. 2 > 0  L~(R) 

used earlier in this paper. 

A similar reasoning exploited in Section 3 permits one to deduce (7.10) from 

the corresponding inequality on R.  Thus one replaces x E Z  by x + u, u E 

[0, I ], and uses the fact that I e 2~i~u - 11 < ~ say, for a in the support  o f  r/. 

Consider  for each k, smooth functions 0 =< a~k, ~Uk + , ~U,- < 1 satisfying 

Ogk(a) = 1 ifnk-'  < lal < nk--'l and COk(a) = 0 if  [al < ½n~-tor laf > 2nk-l ,  

~2(a)  = 1 -- tOk(a) if  lal > ½nk-Zl and ~Uk+(a) = 0 otherwise, 

~k- (a) = 1 -- tOk(a) if laJ < 2nk--tl and ~k-(a) = 0 otherwise. 

Estimate (7.10) as 

y (7.12) Y, max g(a)tok(a)v,(a)rl(a)e z"'x°da 
l < k ~ K  2 

l <-_k <=K n~_S, 

(7.14) + ~ ~ f ~(a)~'k-(a)(v,--v,~_)(a)rl(a)e2"ix"da 2 2 
l<-k<=Kn~_St 

where II [12 refers to the L2(R)-norm. 

By (7.11 ), (7.12) is bounded  by ( ~ referring to the inverse Fourier  transform) 

2 

E suPlg* t l*r~k*ka l  < C E  IIg*o~k I1~ 
k a > 0  2 k 

< c  IIg 1122 

by definition of  o) k. 

Estimate (7.13) by Parseval and using the fact that 

I v.(a)l _-< c n - l l a l  - l "  

Thus, letting fl = lal ~" 
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___<c Ilg l l2sup[E E g[,,2).z,_,,~[(/~)n-l/~ -l]  
,8>0 L k nESk 

#>0  n~ 2# 

< c(e)]1 g II 

using the definition ofSk = [nk-,, rig] N ([(1 + e)']} in the second inequality. 
To estimate (7.14), write for n ESk 

I(v.--vn~_,)(ct)l <= 1- -v . (~ ) [  + I I - v . , _ , ( c 0 l  < c l a l n  t. 

Hence, again by Parseval 

(7.14) < c  [[g [[22 sup [ kY~ ~sZtO,2~;q(fl)nfl]<ce-~ Jig '1~ 
#>0  n 

which completes the proof of Lemma 7.3 and hence of Theorem 5. 

8. Appendix 1: Pointwise ergodie theorem for random sets 

There is a simple way of generating thin sequences of integers satisfying a 
pointwise ergodic theorem on L p, p > 1, by choosing integers at random with 
appropriate density. Recall that a sequence S c Z÷ is ergodic provided 

1 ~w~ 
(8.1) Y, e 2n&x 0 forx~l-I\{O}. 

IS n [0, N]I k~S 
k_-__N 

An ergodic sequence satisfies the mean ergodic theorem 

PROPOSITION 8.2. Let (a.).=,,2 .... be a decreasing sequence o f  positive 
numbers and S c Z + the random set obtained by including each integer n E Z + 
in the set S with probability try. 

(i) Iflim._o~ ntr. = ~ ,  then S is almost surely ergodic. 
(ii) Iftr. = n - ~(log log n) 8, B > ( p - 1) - * ( 1 < p _-< 2), then almost surely S 

satisfies the L;-maximal and pointwise ergodic theorem. 

The main ingredient of the proof is the following fact. 

LFMMA 8.3. Fix N > 1 and let S c [0, N] be the random subset correspond- 
ing to the sequence o f  probabilities (tr.)t-<~ _<N. Then with probability at least 
1 - 1 / N  2 
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(8.4) ~ z" Y~ a,z" _-<c log N Y. an 
n E S  ~, l  < n < = N a n  nff i l  l < n < N  

forallz~C, tzl  = 1. 

PROOF. Denote { ~, ) j =~, ~ N independent (0,1)-valued selectors of  mean an. 

Thus S = S,o = {1 =< n _-< N I ~n(t°) --- 1}. For q > 1 denote 

£ • 
I ~ n ~ N  

Writing, based on Khintchine 's  inequality, 

Iq =< an + Y, (~n a,) an 
I < _ N  n < N  n ~ N  

(8.6) + 2 Y~ en(~n -- an) L'td~®d,) 
n ~ N  

n n<=N 

it follows that 

(8.5) ,  cmax(  
n 

(8.6) Y~ a n ( ~ n -  _--<cmax q , x / q  an: ( i f l a n l = l .  
n < N  n N 

Writing 

Zn~_N a .  _ 

= < l l Z ( { . - a n ) l  4 [Z(~n-an)z"l [  
Za.  Za.  

and using the fact that sup m = 1 D(og, z) may be evaluated taking z in a net g of  
2N points (by Bernstein's inequality), it follows from (8.6) applied with 

q = log N '~ Z ~ N  an that 
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sup 3(o9, z) =< c sup 3(o9, z) q 
I z I ~ 1 Ll(dca) z E 8  

(8.7) < 2csup II D(og, z)[[q 
z E 8  

Consequently, for an appropriate choice of the constant c in (8.4), (8.4) will 
hold with probability at least (by Techebychev's inequality and (8.7)) 

~ ~ n  ~ -q`2 q l 
1 -- c -q sup D(O9, z) > 1 N2. 

[log NJ i z ¢ = l  q 

LEMMA 8.8. Let S be the random set considered in Proposition 8.2. Then 
almost surely 

sup ~ . . . . . . .  sup Y. or, z" <ov 
u l o g U ~  J z" [z4 = 1 n ~ n _ - < N  0 'n  n ~ N  

where Su = S f3 [0, N]. 

PROOV. It follows from Lemma 8.3 that Su fulfils (8.4) with probability at 
least 1 - I/N 2. Lemma 8.8 is now straightforward. 

LEMMA 8.9. Let S be the random set of  Proposition 8.2 and 1 < p <= 2. 
Then almost surely, for all N and some constant c, the following inequality 
holds for an arbitrary dynamical system (~, It, T): 

(8.9) i - ~ u  I ~s,,T  cr,,T < c -  l i f i l , , .  
n ~n<=N~TN n=l [~n~NITnJ 

PROOV. Obviously, for p = 1, (8.9) holds with c = 2. Hence, by interpola- 

tion, it suffices to consider the case p = 2. If c satisfies 

i z l= l  SNI n~s .  En_<_Nann<=N kEn~Nl~nl 

yon Neumann's theorem implies, for an arbitrary unitary transformation Uon 

a Hilbert space H, 

1 U" 1 Y~ a,U" <=c( logN )l/2 

[~N~ nESu ~n <N 17n n <N B(H) \Zn  <N an/ 
o 
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In particular, (8.9) holds for p = 2. 

PROOF OF PROPOSITION 8.2. (i) If l im,_~ cr, n = zc, then (log N)/Z, <N ~n 
0 for N---" ~c. 

Also, since an "~ and X,=~ ~ a, = zc, 

Hence, by Lemma 8.8, 

1 
2  r.z" --- 0 

~n n<N 
n<_N 

1 
2 

(ii) It follows from (8.9) that 

1 

Again, since a. "~ and 
ergodic theorem 

f o r z ,  1. 

z " ~ 0  f o r z : # l .  

X n 2 U a ,  ,~_~cr,,T < c(loglogU)-"'¢ ll f[lp. 

Za, = ~c, as a consequence of the usual pointwise 

1 N~oc 
(8.11) ~ E anT~f ----~ L ( f )  a.s. 

~n n<=N 
n<N 

forf~LP(fL/~) ,  p >= 1. Here L ( f )  stands for the orthogonal projection of f on 
the T-invariant funciions. Also 

(8.12) sup )Ncr, X a .T~  p<cpll f l lp f o r p > l .  
N ~n  = n<N ! 

Since I SN[ ~ (Iog N)(1og log N) B, for f>= 0 

(8.13) sup ~ (  • T~f~ < 3  sup k 1 • T"f. 
N ]SN] \nES~ / k,N=Z 2 ISNI n~s~ 

Thus, as a consequence of  (8.13), (8.10), (8.12) 
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s u p ~  Y~ T 
u ISNI . ~ s .  ,, 

=<3 sup Y, a,,T 
N ~n<Nan  n<N P 

3 Z. 1 y~ a.T.f) - 

\ l ip 

<c I I f L +  ~, k-B"'') {Ifllv 

c II f L .  

Since S satisfies the LP-maxima] inequality, the convergence a.s. 

1 
- -  E T " f ~ L ( f )  
I S u  l ,,~s,, 

for f ~  L p (fl , / l)  reduces to the case of bounded measurable functions. We may 
then restrict N o f t h e  form [exp(1 + e)k], k = 1, 2 , . . .  and the same reasoning 

as above together with (8.11) leads to the desired conclusion. 

REMARK. It is possible to satisfy Proposition 8.2(i), i.e. S verifies the mean 
ergodic theorem, without S satisfying a pointwise ergodic theorem o n  Lq(~"~, [A ) 
for any q < ~ .  Examples of ergodic sequences, which do not satisfy the 
pointwise ergodic theorem for bounded functions, were obtained by A. Bellow 

and B. Weiss (using different methods). 

9. Appendix 2: Commuting transformations 

Assume Tj, T2 . . . . .  T k are commuting measure preserving transformations 

on a measure space (~,/t) .  Let Pl(n) , . . . ,  Pk(n) be polynomials of  n ~ Z +  

taking integer values. Define 

n - I  
(9.1) ~ , f  = 1 ~ T~,(m).. " Tf,(,,,~f. 

? / m = 0  

The same method which enabled us to prove Theorems 2 and 5 also permits us 

to show 

THEOREM 6. The maximal function J I f =  sup,>=14~/,fl is L2-bounded 
and ,~¢ j converges almost surely for f i n  L 2(~, #). 



Vol. 61, 1988 ERGODIC THEOREM 65 

There are some natural applications of  Theorem 6 where the conclusion of  

the usual pointwise ergodic theorem is made more precise. Consider  for 

instance the ergodic transformation T on the 2-torus given by 

T ( x ,  y )  = (x  + y ,  y + a) 

where a E R  \ Q. Then 

T " ( x ,  y )  = ( x  + ny  + ~n(n - l)a, y + h a )  

and for ~0 a bounded  measurable function on 17 (identified with the first 

variable) the pointwise ergodic theorem gives 

1 ( m(m-l))f (9.2) lim - ~o x + m y  + a = ~o 
, - ~  n , ,= l  2 

almost surely with respect to the variables x,  y.  It follows from Theorem 6 that 

in fact (9.2) holds almost surely in x,  for any given point  y ~17 (i.e. almost 

surely on every fiber). Indeed, the last s tatement is valid for ¢p a tr igonometric 

polynomial  1-I (since a is an irrational) and extends to L2(1-I) because of  the 

boundedness  of  the maximal operator  J C f  = sup, __> z I . ~ , f l  where d ,  is given 

by (9.1) taking k = 2, T~ = y-shift on 17, T2 = a-shift on l-l, p~(n) = n,  p2(n) = 

n(n  - 1)/2. 

B. Weiss kindly pointed out to me that the commuta t ion  hypothesis on 

T ~ , . . . ,  T~ is essential in order to have an ergodic theorem. 

We may assume pl(0) . . . . .  pk(0) = 0 in (9.1). Notice that i f p ( n )  takes 
integer values for n E Z,  then p must  have rational coefficients. If  q is a 

common denominator  of  the coefficients o f  p~ . . . .  , Pk, one has for n = 
m q + r , O < = r . < q  

p j (n )  = pj(r) + p j ( m )  

where pj has integer coefficients, say 

p j ( m ) =  Y~ aj,tm' (ajt~_Z). 
l<=t<=s 

Hence 

T ¢ , ( " ~ .  . . T ~ k ( " )  = U ~ ' U t " 2 ~ .  . . U ~ " ' ~ T ¢ , ( ' .  . . T ~ , ( "  

denoting for 1 < t _< s 

U , = T ~  .. . . . .  ~ . , .  
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Consequently,  the proof  of  Theorem 6 reduces to the particular case 

p l ( m ) =  m,  p 2 ( m ) =  m 2 . . . .  , P k ( m ) =  m k 

(where k takes the value s above). 

In proving the maximal inequality, the general model  (~ ,  #; T ~ , . . . ,  T,) is 

equivalent to the model  ( Z k ; S I , . . . , S k )  where Sj is the shift in the j- 

coordinate.  In this case, simply define for fixed x E f~ 

f ( m l  . . . .  , m , )  = f(T~'  . . . .  T~'~x). 

In the model  (Z k, Sl . . . .  , S,), we have 

.~ l , f  = f *  K. where K, = 1 ~, 5(m,.,: ...... k). 
n m = l  

The relevant exponential sums are now given by 

(9.3) /(',(al . . . . .  a , )  = ~ ~ e 2"i(''",+m'%+'''+'%). 
m = 1 

For 01 . . . .  . 0 ,  E[0.  1[ n Q with common  denominator  q < n ~, define the 
"major  box" 

• t1(01 . . . . .  0h) = {(al, • • •, a , )E lq*  [ [aj - 0jl < n -J+a(1 =<j < k)} .  

Here 0 < 8  < 1. It follows from Theorem 3, Ch. IV in [Vin] that if & = 

(al . . . . . .  ak) is not in a major  box, then 

(9.4) [/(',(d)[ < n - ~ '  

for some 8'  > 0. 

In fact, we do not need the sharper est imate of  [Vin] for our purpose and the 

previous statement can be obtained by successive applications of  Dirichlet 's 

principle and H. Weyl 's estimate Lemma 9.5, starting from the highest 

power  k. 

LEMMA 9.5. Let f ( x ) = ~ l x  + a 2 x Z +  . . .  + a g e  ~ and I , ~ , - a / q l  < 1/q 2, 

(a, q ) =  1. Then 

I Y. < + n  + q n - * ]  p w h e r e p =  e2n(f(m) nl+e[q I ! 1/2,-1 
m = l  

(cf. [Vin] p. 4) 
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Let now &Eo/I(O~ . . . .  , Ok) and write 0j = a / q ,  a j =  Oj+ flj, Ifljl < n  -j+~. 

Write m = q d + r  where 0___<d<n/q and r = 0 , 1  . . . . .  q - 1 .  Then for 
j = l  . . . . .  k 

a i m  j = (Oj + flj)(qd + r ) J E Z  + Ojr j + fljqJd j + o(n  - '+za) 

and hence 

Denote 

~ e 2ni(ma~+ ... +mketk) 

n m = l  

__-- 1 e2ni(rO,+...+rkOk) y~ e2~i(#,qd+" Jr- o(n_l/z)" 
d=O 

~o(x) = a~x k + ak_ ~x k-  ~ + • • • + a~x 

the rational trigonometric sum 

(¢ (x) ]  = q-' 
(9.6) S \ - - / q  ~ e 2n'~(r)/q 

r~O 

and 

f0 
/ /  

(9.7) v,(fi) = 1 e2,,Bk~,k+...+p,:,)dy" 
n 

Then, from what precedes 

(9.8) /(,(d) = I S  (~(x)) - v:,). + o(n 
q 

Our next concern are estimates on the S(~o(x)/q). 

LEMMA. 

(9.10) If(a~ . . . . .  aa., q)  = 1 a n d  q is p r ime ,  then I S(~o(x)/q)! < kv~q.  

(9.11 ) If(a~ . . . . .  ak, q) = 1, q = pS with p a p r i m e  a n d  s > 1, then 

\ - - /  <-_ c - .  
P 

(9.12)Ifq -- q~q~. • • qk a n d  (qj, q/)  = 1 f o r j  ~ j ' ,  then there is the ident i ty  



68 J. BOURGAIN Isr. J. Math. 

\ q / \ ~ / "  qk / 

where Qs is def ined by q = qjQj. 

(9.13) lf(a~ . . . .  ,ak ,  q)  = 1, IS(~o(x)/q)l  < c ( k ) q  ~-vk. 

A s s u m e  (a~ . . . .  , ak, q)  = 1, q has a p r i m e  fac tor  at least equal  to s 

(9.14) 
a n d  q > s  1+6. Then 

IS(~o(x)/q)l  < cqs -1/2-6' 

PROOF. (9.10) is the A. Weil est imate (cf. [L-N],  p. 223). 

(9.11) Let 0 _< r < p~, with r = y + zp ~- t where 0 < y < p~- ~ and 0 < z < 

p. Then, as in (6.8) 

q - I  
~,, e 2rti@(r)lq _~. ~,, 

r = O  O<y<p ~-1 

p - I  
e 2m~(y)/q ~, e2ni~ '(y)z/p 

r=O 

= p Y. e 2ni~(r)/q. 
O < y < p  s- t  

Pie'{Y) 

It is easily checked that # (0 -_< y < pS-I [ p divides q'(y)} is bounded by 
c(k)p s-z. Hence 

I S(~o(x)lq)l  < cp ~- t. 

(9.12) Is straightforward (see [Vin], Ch. III. Lemma 1). 

(9.13) Is due to Hua.  In fact it would suffice for our purpose to est imate 

IS(q~(x)/q)l  < cq 1-6 for some J > 0. Such an estimate is given by (9.5). 

(9.14) Write q = prq, where p > s is prime, ~, > 1 and (p ,  q') = 1. By (9.12) 

we have 

S ~ O ( x )  [ ~ = s ( ( q  ),-Ilq~(q ' x  ) ~ . s ( p - ' e ~ ( _ p ~ x ) l  
\ q / \ pr / \ q, / 

I f ?  > 1, it follows from (9.1) that IS(~o(x)/q)l  < cqp -~. 

I f  ~, = 1, it follows from (9.10) and (9.13) that 

[S(~o(x)/q)] < cp IO(q,)l-  Ilk <= cqs 1/2- I/k + I/k(l +6). 

Proceeding as in Section 6, define for diadic values of  s 

Q, = [s !]c<k)0°g sl 
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where c ( k )  is an integer depending on k and let further 

L = ((at . . . . .  ak, q )  l ( a , . . . , a ~ , q ) =  1 a n d q  }Qs}, 

rs = L \ r s _ , .  

Define for & = (a l , .  • •, ak) EYIk 

[..(&) = v.(&) + Y. Y. S ( q ,  a ,  . . . .  , ak)V.(6~ --  O)~s(& -- O) 
s diadic (ab...,ak,q)~-Fs 

(9.15) 
+ Y. ~ S ( q ,  a, . . . . .  ak)v.(6~ - O)(q)s - V/s)(6~ - O) 

s diadic (ab...,ak q)EF, 
q<s'i+~ 

where v, is given by (9.7), 0 = ( a d q , .  • • ,  a j q ) ,  

S ( q ,  ai,  . . . , a k ) = l s ( ~ ( x ) )  q \ T /  w i t h ( 0 ( x ) = a k x  k + . . .  + a ~ x ,  

and for 0 < p < 1 < J¢, 0 < ~o s < l and 0 < ~s -< 1 are smooth functions saris- 

fying 

~Os(fl) = 1 if IPl < 2-(~') and ~Os(fl) = 0 for IPl > 2.2-Is'l, 

~ ( f l ) = l  i f l f l l < 2 - ( s x )  and ~ s ( f l ) = O  f o r l f l l > 2 . 2 - ( s x )  

Here we denote Ifl I = max( Ifll I, • • -, IPkl) for/3 ~ R  k. 

(9.15) Is thus a complete  analogue of  the formula for £ , ( a )  given in Section 6 

by (6.11), (6.12). Rewriting 

i '  
v . ( f l )  + e 2"i("kp~+ "k-'p*-,xk-' +.. .  +.p,X)dx 

it follows from van der C o rp u r s  lemma that 

[ (9.16) I v , ( f l ) l < c  1 +  Y. nJl/~il 
l~j<~k 

We are now in a posit ion to repeat verbatum the p roof  o f  Lemma 6.13 to show 

the inequality 

(9.17) II R. - tS. < c 0 o g  n ) - "  

for some tr > ½. 

Thus, denoting again D = {2 k [ k = 1, 2 . . . .  }, the evaluation o f  the maximal 

function 
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sup [ f * K, I I~(z ~) 
nED 

reduces to 

(9.18) sup [ f  *L , I  i,(z,). 
nED 

Invoking the same argument as in Section 6, the proof of the L 2o boundedness 
of the maximal operator is completed by the following lemma. 

LEMMA 9.19. Let 0 <= ~o <= 1 be a smooth bumpfunction on R* vanishing 
outside a r-neighborhood o f  O. Let R be a set o f  points 0 in Qk A [0, 1] k which 
can be given a common denominator Q satisfying 

Define 

(9.20) 

Then 

Qz ,~. 1. 

a , f ( x )  = ~ f v,(~ - O)f(d)e 2"~">~0(~ - O)d~. 
OER 

(9.21) sup IA, f l  I'~zb <= C II f l l / 2cz ' l  • 
nED 

ProoF. Repeating precisely the argument developed in Section 3 of this 
paper (in its k-dimensional version) permits us to derive formally (9.21) from 
the following inequality in Euclidean space: 

sup f v"(fl)V(]J)~°(fl)e2"a~"~>dfl L',R*) 

(9.22) c ( f ,F(/3), d/J) 

Consider the curve F in R* parametrized by y(t) = (t, t 2 . . . .  , t*) and let n . / t .  
be the image measure on R* induced by Yto,.v Thus 
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and consequently, the left member of (9.22) equals t 

(9.23) sup ]l (~F) v *#. I • 
nED L2(Rk) 

We know that 

k 

(9.24) b l - /~ . ( a ) [  <c Y~ nJ[ajl 
j = i  

and also 

(9.25) 
k I - l/k I/~.(~)1 ___<c 1 +  Y~ nJlaj[ 

j = l  

Estimate II sup.eolf*#,1112 by a standard Fourier transform argument. 
Denote (P,),>0 the standard 1-dimensional Poisson-semigroup with Fourier 

transform P,(2) = e -'lai. Define 

K , = P , @ P , ~ @ . . . ® P , ,  

on R k. Hence 

s u p l f * K . I  < sup I . f * ( P , , @ ' " ® P , , ) I  
n h .....tk > 0 

defines an L:-bounded operator (by iteration of the 1-variable result). Next, 

estimate 

( (9.26) supl.f*/x,I <sup l . f , g , [  + ~ I f* (g , - z t , ) [  2 
nED n n~D 

where 

,, (z l.f *(K. - uOl=)"2 ll2 = { : ,e  
q 1 t/2 

by Parseval's identity. 

Hence it remains to show that 

E I&(a)-#~(a)L ~ < c  
nED 

* This is a special case of maximal functions associated to homogeneous curves, cf. [St], 
p, 404. 
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which is immediate from the fact 

IK,(&)-~ , (&)l=<cmin Y. nJ}ajl, %1 
j=l  j 

as a consequence of  (9.24), (9.25) and since 

/¢.(a) = e -I.~-,I +.--+.*1~,11. 

This completes the proof of  Lemma 9.19 and thus the L2-boundedness of  the 
maximal operator associated to (9.1). 

To prove the almost sure convergence of the .~¢.f, we proceed as in Section 
7, elaborating on what was done earlier in this section. The details are 
completely straightforward and left to the reader. 
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